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REAL OPTION VALUE 

 

CHAPTER 11   MULTI-FACTOR RENEWALS  

         

  

Renewal models are usually based on the assumption that real assets such 

as equipment deteriorate with age and/or usage, and periodically have to be 

replaced with replica equipment.  The five models described in this chapter are 

based on various assumptions regarding the drifts and volatility of equipment 

inputs and outputs, the number of times equipment might be replaced, and the 

feasibility or opportunity for asset abandonment.  There are two basic focus areas: 

the optimal timing of renewal, or abandonment; and the real option value of the 

renewal opportunity at any moment of time. 

 The most general renewal model is based on the assumption that expected 

sales decay and operating costs increase with the equipment age/usage, and both 

are variable.  Typical assumptions are that both sales and costs follow a geometric 

Brownian motion, with a constant drift and volatility over time.  There are an 

unlimited number of times equipment can be renewed or property renovated (and 

the production process or underlying economic world is perpetual), with a constant 

investment cost for renewal which will bring sales and costs back to the original 

levels. 

  Generally, higher sales volatility is associated with delayed renewals 

(lower current sales levels that justify a renewal).  The correlation between sales 

and operating costs has a significant influence on the renewal boundary, with 

higher correlation associated with less delayed renewal (higher current sales levels 

that justify a renewal).  Also, the sales expected immediately following an 

equipment renewal has a greater relative bearing on the spread between the current 

sales and costs that justifies a renewal than either its operating or renewal 

investment cost. 
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The multi-factor renewal problem is to find a P̂  given Ĉ  (the sales level P 

at which a renewal decision should be made, if the cost level equals Ĉ ), which is a 

solution to a small set of simultaneous equations.  This solution method is 

computationally easy and transparent.  

Other specific renewal models are based on limiting assumptions: the 

deterministic NPV models assume all inputs are constant; one-factor renewal 

models such as Dobbs (2004) assume either sales or costs are constant; single 

renewal models assume only one renewal is possible; and the abandonment model 

assumes no further renewals are possible, but exit is optional. There are easy 

analytical solutions for all of these specific renewal/abandonment models. 

Asset renewal is relevant for many types of real assets.  Major examples 

are: in transportation, where airplanes, buses, railcars, autos and taxis, cycles, ships 

(and containers) and shoes have limited life due to physical deterioration as well as 

to innovations in new equipment such as regarding fuel efficiency or speed; 

process equipment such as farm tractors, construction machines, office support 

systems for copying, computing and communicating; stationary systems such as 

power stations, and pipelines; non-durable and semi-durable support devices such 

as software, medical implants, and clothes; finally, limited life consumables such 

as drugs, which companies attempt to replace with newer drugs as the old products 

come off patent.  You can think of many more applications, including renewing 

real option texts and teachers. 

  Early deterministic replacement theory was developed by Faustmann in 

1849 on optimal tree harvesting and replanting, see Linnard and Gane (1968). The 

optimal replacement policy for equipment is extended by Lutz and Lutz (1951) to 

the continuous time domain. Terborgh (1949) simplifies the analysis by treating 

the operating cost behavior as a time dependent variable. The effects of 

depreciation and tax, salvage values and technology on replacement policy are 

covered in Merrett and Sykes (1966) and Bierman and Smidt (2007).  

There are other stochastic renewal models such as Mauer and Ott (1995), 

who develop a risk neutral valuation model to investigate the effect of tax and 
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salvage value on the replacement decision.  These replacement models focus on a 

single decay type, typically the deteriorating quality or operating costs.  

When two driving factors in a real option model are both subject to 

variability, some authors such as Paxson and Pinto (2005) attempt to reduce the 

dimensions by similarity methods, or focus on net cash flows rather than the 

separate elements.  Adkins and Paxson (2010) provide a quasi-analytical implicit 

solution to a two-factor real option renewal model without having to reduce the 

dimensions.  As the practitioner focuses on the specific critical drivers of periodic 

equipment renewals, the current sales or cost levels and expected volatilities and 

correlation plus expected reversionary sales and costs upon renewal can be entered 

into quarterly or even monthly management accounts using spreadsheets in order 

to make appropriately timed renewal decisions. 

 

11.1 MULTI-FACTOR MULTIPLE RENEWALS  

  

Sales of goods produced by the asset at any time are denoted by P , operating 

costs by C , and the net cash flow is P C . At installation, the sales and operating 

cost levels for the newly installed asset start at IP  and IC , respectively. It is 

assumed that sales and operating costs change at the annualized continuous rate of 

0 P  and C 0  , respectively, so generally  IP P  and  IC C . The renewal 

re-investment cost is denoted by the known constant K . The incumbent’s residual 

salvage value at the renewal event is either zero, or it can be absorbed in K  as 

long as it is a deterministic constant.  

It is assumed the two uncertain variables follow distinct geometric 

Brownian motion processes with drift. For  X P,C :   

 X X XdX Xdt Xdz                                                                                              (11.1) 

where X  is the instantaneous drift rate, X  is the instantaneous volatility rate, 

and Xdz  is the increment of a standard Wiener process. Dependence between the 
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two uncertain variables is described by the instantaneous covariance term P C   

where   P CCov dP,dC PCdt    and 1  . 

Suppose the renewal can be represented by the set {P̂ , Ĉ }, where P̂  and 

Ĉ  denote the respective optimal threshold levels for sales and operating costs that 

signal renewal. Renewal is triggered when the prevailing operating cost and sales 

levels simultaneously attain their respective thresholds.  

The function F  is defined as the value of the incumbent asset including its 

embedded renewal option. All renewal decisions are treated as being made in  

isolation to any other enacted policies, so scale and other flexibilities are assumed 

to be absent. The value of F  depends on the prevailing sales and operating cost 

levels so  F F P,C . By assuming complete markets, standard contingent claims 

analysis can be applied to the asset with value F  to determine its risk neutral 

valuation relationship. This is expressed as the partial differential equation: 

 

 

2 2 2
2 2 2 21 1

2 22 2

0

  
     

  

 
       

 

P C P C

P C

F F F
P C PC

P CP C

F F
P C rF P C .
P C

                               (11.2) 

where r  is the risk-free rate of interest, and P  and C  are the risk-adjusted drift 

rates, respectively, for sales and operating costs.  It is assumed that r-X >0. 

The simplest kind of generic function satisfying the homogenous part of 

(11.2) takes the form: 

    HF P,C AP C                                                                                                   (11.3) 

where A  is a parameter whose value has to be determined.  

The functional form (11.3) satisfies the homogenous part of (11.2). 

Substituting (11.3) in the homogenous part of (11.2) reveals that the risk neutral 

valuation relationship is satisfied by the following characteristic root equation: 

     2 21 1
2 2

1 1 0                       P C P C P CQ , r .      (11.4) 

This is the two-factor equivalent of the  quadratic equation for the one-factor 

model in Chapter 4A.  
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By ignoring higher derivatives greater than one, the particular solution 
PF  

to (11.2) is: 

  P

P C

P C
F P,C

r r
 

   
.                                                                                     (11.5) 

When sales approach infinity, there is no economic justification for 

renewing the asset, so the renewal option value tends to zero and 
PF  dominates the 

value of F . In contrast, a near zero value of  P  makes asset renewal inevitable, 

which is reflected in an infinitely large renewal option value with  FH dominating 

the value of F. Similarly, there is no economic justification for renewing the asset 

when operating costs are near zero, so the renewal option value will be dominated 

by the value of 
PF . The asset should be renewed when C  becomes infinitely large, 

when the renewal option value becomes exceedingly large and dominates the value 

of 
PF .  From these boundary conditions,  and  solutions for (11.4) are <0, >0, 

so (11.3) simplifies to: 

   
 

H
F A P C .                   

(11.6)  

Stitching together the particular and homogenous solutions, (11.5) and (11.6), 

produces the value of the asset and its renewal option: 

  
   

   
P C

P C
F A P C

r r
                                                                      (11.7)  

The value matching boundary condition identifies the renewal event when 

P  and C  simultaneously attain their respective threshold levels P̂  and Ĉ . At the 

renewal event, the incumbent asset value including its renewal option is given by 

 ˆˆF P,C . After expending the renewal investment cost K , the incumbent is 

exchanged for a replica having an asset value including its renewal option 

 I IF P ,C . The value matching relationship,    I I
ˆˆF P,C F P ,C K  , can be 

expressed as: 

 
        

       

I I
I I

P C P C

ˆˆ P CP CˆˆA P C A P C K
r r r r

.           (11.8) 
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There are two associated smooth pasting conditions, one for each factor, so that: 

 
   

1 1
  

    
     

P C

ˆP̂ C
A

ˆ ˆˆ ˆr rP C P C
                              (11.9)  

Clearly A 0  as required, since 0   and 0  .  

 

By substituting (11.9) in  ˆˆF P,C  and recognizing that  I IF P ,C K  must be 

positive otherwise no renewal investment would ever be made, the asset value 

including the renewal option F̂  at the renewal event is: 

 
 

 
 

 1 1 0           
     

P C

ˆP̂ Cˆˆ ˆF F P,C
r r

.    (11.10) 

This implies that 1    .  

 

From (11.9): 

 
   

0 
     

P C

ˆP̂ C

r r
                                                                      (11.11)  

provided 0Ĉ . Since (11.11) implies that  ˆP̂ C  can be negative, it is possible 

that renewal occurs for a negative prevailing net cash flow, which is a result that 

contrasts with the deterministic replacement model and demonstrates the existence 

of hysteresis. 

 

Using (11.9) to eliminate A , the value matching relationship (11.8) can be 

expressed as: 

 
1



 

  
      

            

I I I I

P C C P C

ˆ ˆˆ P C P CP C C
K

ˆˆr r r r rP C
.            (11.12)  

By substituting (11.11) in (11.12), this can be expressed as: 



    7 

 
 

 
 

1

0


 

 

    
          

         

   
   

PI I

C C

I I

P C

ˆ rP CCˆH , C
ˆr rC

P C
K .

r r

           (11.13)  

The characteristic root equation (11.4), the reduced form value matching 

relationship (11.13) and the reduced form smooth pasting condition (11.11) 

constitute the two-factor renewal model from which the discriminatory boundary 

is generated. To determine the boundary, set these three equations equal to zero, 

by changing ,  and P̂ , corresponding to some assumed Ĉ .  

 

11.2 RESTRICTED RENEWALS 

 

Suppose that there are a finite number of renewal opportunities, due to 

technical innovations, or equipment-type obsolescence, or simply supplier choice 

(what happened to the convenient old Word equation editor, or wooden wheels, or 

Nike Pegagus running shoes?).  Let J=0, 1, ..., denote the number of remaining 

renewal opportunities.   JF P,C  denotes the incumbent asset value when J  further 

renewal opportunities are available. For J 1 , one further renewal opportunity 

remains, after which the only available opportunity is abandonment, that is J 0  

where the owner has an only option to abandon the asset. 

A. Abandonment 

When there are no further renewals, the incumbent asset value including 

the abandonment option is denoted by  0F P,C . The valuation relationship satisfies 

the same PDE as (11.2) and the solution takes on a similar form as (11.7) except 

for the parameter changes: 

   0 0

0 0

 
  

   
P C

P C
F P,C A P C

r r
.                                                     (11.14) 

The value matching relationship for J 0  becomes: 

   0 0 0 0

0 0 0 0 0 0
0

 
   

   
P C

ˆP̂ Cˆ ˆˆ ˆF P ,C A P C
r r

.                                        (11.15) 
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Assuming no salvage value, 0 0 1    ,     (11.16) 

so their solution values can be directly evaluated from (11.4). The renewal 

boundary is linear and given by: 

   
   

0 0

0 P 0 C

ˆP̂ C
0.

r r
 

     
 

    (11.17) 

B. Single Renewal Option 

  When there is only one remaining renewal opportunity so J 1 , the solution 

is derived directly from the model with multiple opportunities by eliminating the 

renewal option from the replica asset value. Using the subscript s  to denote the 

single renewal opportunity, then from (11.8), the value matching relationship 

becomes: 

 
ˆˆ

ˆˆ s s s s I I
s s s

P C P C

P C P C
A P C K

r r r r

 

   
    

   
.                                          (11.18) 

It follows that the two smooth pasting conditions associated with (11.18) imply 

(11.9), and by substituting and rearranging, the reduced value matching condition 

is: 

 
ˆˆ 1

0s s s I I

P s C P C

P C P C
K

r r r r



    

 
     

    
.                                             (11.19) 

A smooth pasting condition is: 

 

   
s s

s P s C

ˆP̂ C
0.

r r
 

     
      (11.20)

 

 

 

The single renewal boundary is evaluated by solving the three simultaneous 

equations: the reduced form value matching relationship (11.19), the reduced form 

smooth pasting condition (11.20) and the characteristic root equation (11.4). A 

simpler version of (11.19) is found by using (11.20) to eliminate P̂ : 
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 

 
ˆ

1 0s I I
s s

s C P C

C P C
K

r r r
 

   
     

  
.                                      (11.21) 

The renewal boundaries for the three cases of an infinite number of 

renewal opportunities, a single renewal opportunity and the abandonment 

opportunity are vertically stacked: the boundary for the infinite renewal model 

entirely lies above that for the single renewal model, which entirely lies above that 

for the abandonment model, that is for every operating cost threshold level,  

s 0
ˆ ˆ ˆP P P   . This means that the trajectory of prevailing sales and operating cost 

levels, starting from their respective initial levels IP  and IC  at renewal, will 

always hit the infinite renewal boundary first before reaching either the single 

renewal or the abandonment boundaries.  

Provided that IP  and IC  remain unaltered during the project lifetime, the 

infinite renewal policy always dominates the other two policies. The dominance of 

the infinite renewal policy is overruled whenever there is an appropriate decline in 

the initial sales level, or an appropriate increase in either the initial operating cost 

or the re-investment cost. Suitable changes in any of these three will bring about a 

switch away from the infinite renewal to the abandonment policy. If the 

abandonment opportunity is to become viable at the renewal event for some initial 

sales level, then both the incumbent asset value and the replica asset value less the 

re-investment cost have to equal zero, which is the abandonment value: 

 

C. Deterministic and One-Factor Renewals 

 

Adkins and Paxson (2011) show that the two factor deterministic renewal  

model is a special case of the two factor stochastic model.  Using the suffix * to 

denote the optimal deterministic value, the first order condition for the maximum 

NPV for an infinite chain of replica assets with a constant renewal interval T* 

simplifies to: 
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1 1    
          

             
   

ˆ ˆr T r T
CP I I

P C P C

P Ce eˆP̂ C K
r r r r r r r r

 

                                                                                                                               (11.22) 

The parameters of the real option renewal model are amended by setting 

0   P C
, then from (11.4) and (11.11), and using the subscript d to denote the 

deterministic version of the general renewal model, ˆ* T T , where the optimal 

cycle time is: 

ˆ ˆ1 1ˆ ln lnd d

C I P I

C P
T

C P 

   
     

  

     (11.23) 

                  0P d C d r      ,     (11.24)  

                        
ˆ

0
ˆ ˆ

rTI I

d d

P C
e

P C




  

     
   

                                                          (11.25) 

Converting the Dobbs (2004) one-factor (cost) model to a one-factor model 

with only uncertain sales, then C 0  , C 0   and 0  in the two factor 

stochastic model. The sales threshold level is derived from (11.4), (11.11) and 

(11.13): 

 

2

1

2

2 1

1 0

  
       

        

I I

P P

P̂ P P
K

ˆr rP
,                                   (11.26)      

2

P P1 1
2 2 22 2 2

P P P

2r    
        

     
.                                                               (11.27) 

 

11.3 SOLVING SETS OF EQUATIONS TO FIND P̂  

 

The optimal renewal boundary is determined for a representative range of 

P̂  and Ĉ  using the base case data and spreadsheets in Figures 11.1, 11.2 and 11.3.  

In order to compare the general two stochastic factor case with the conventional 

deterministic case, first the deterministic results are calculated in Figure 11.1. 

Simultaneously solving equations 11.23-11.24-11.25 produces the results that 
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ignoring sales and cost volatility justifies renewing equipment when P̂ falls to 65 if 

Ĉ  has increased to almost 30.  The NPV of this renewal decision is zero at r=7%, 

when the P drift is -2% and C drift is 4%.   

 

Figure 11.1 

 

Note that the optimal renewal time is slightly over ten years.  Assuming 

deterioration occurs at the end of the year, the rows 46 and 47 show that P would 

have declined to 65.50 and C increased to 29.84 at the end of the tenth year, so the 

trigger spread justifying a renewal is almost reached.  The P̂  VALUE and Ĉ  

VALUE are the first and second terms of (11.22, LHS), while the Renewal V-K is 

(11.22, RHS), the net present value at the reversion P and C less the renewal cost.  

1
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34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

A B C D E F G H I J K L

                           Renewal Template
INPUT Deterministic

PI 80.00  

CI 20.00

K 100.00

C* 29.95

P 0.00

C 0.00

 0.00

r 0.07

P -0.02

C 0.04

OUTPUT

Q, 0.0000  

SP 0.0000  

SUM 0.0000

 -0.0451

 1.7274

P* 65.371  

C* 29.953

T*C 10.098

T*P 10.098

SOLVER 0.000

P*-C* 35.418

Deterministic

Q, B11*B18+B12*B19-B10 EQ 24

SP ((B3/B20)^B18)*((B4/B21)^B19)-EXP(-B10*B22) EQ 25

SOLVER SET B24=0,CHANGING B18:B21,B22=B23

T*C (1/B12)*(LN(B21/B4)) EQ 23

T*P (1/B11)*(LN(B20/B3)) EQ 23

P* VALUE 831.52

C*VALUE 709.29

Renewal V-K 122.22

NPV=0 0.0000

  

P* B20*((1/B10)+(B11/B10)*(EXP(-B10*B22)/(B10-B11)))

C* B21*((1/B10)+(B12/B10)*(EXP(-B10*B22)/(B10-B12)))

Renewal V-K B3/(B10-B11)-B4/(B10-B12)-B5

NPV=0 B34-B35-B36 EQ 22

ASSET DETERIORATION OVER THE YEARS

YEARS 1 2 3 4 5 6 7 8 9 10 11

P 78.42 76.86 75.34 73.85 72.39 70.95 69.55 68.17 66.82 65.50 64.20

C 20.82 21.67 22.55 23.47 24.43 25.42 26.46 27.54 28.67 29.84 31.05

P-C 57.60 55.20 52.79 50.38 47.96 45.53 43.09 40.63 38.16 35.66 33.15

P $B$3*EXP($B$11*B45)

C $B$4*EXP($B$12*B45)
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The deterministic method justifies a renewal when the P̂  and Ĉ values at T* less 

the reversion PI and CI values less the renewal investment cost is zero.   

 

Using Ĉ =29.95 for the two factor stochastic case, solving equations 11.4, 

11.11 and 11.13 simultaneously, Figure 11.2 shows that a renewal would be 

justified only if P<57.  If current P=60 and current C=30, a renewal would be 

justified only in the deterministic case. For comparison, the general renewal model 

setting P=C=0 replicates the deterministic result.  

    Figure 11.2 
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18

19
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21

22

23

24
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34

35

A B C D E F G

Renewal Template
INPUT Stochastic P & C Stochastic Model P & C

PI 80.00 80.00  

CI 20.00 20.00

K 100.00 100.00

C* 29.95 29.95

P 0.30 0.00

C 0.30 0.00

 0.00 0.00

r 0.07 0.07

P -0.02 -0.02

C 0.04 0.04

OUTPUT   

Q, 0.0000 0.0000

SP 0.0000 0.0000

H, 0.0000 0.0000

PART 1 1241.82 778.06

PART 2 0.0984 0.1571

PART 3 -122.22 -122.22

SUM 0.0000 0.0000

 

 -0.5107 -0.9335  

 0.8040 1.2832  

P* 57.076 65.371  

P*-C* 27.123 35.418

 

Q, 0.5*(B7^2)*B23*(B23-1)+0.5*(B8^2)*B24*(B24-1)+B9*B7*B8*B23*B24+B11*B23+B12*B24-B10 EQ 4

SP B25/(-B23*(B10-B11))-B6/(B24*(B10-B12)) EQ 11

H, B18*B19+B20 EQ 13

PART 1 B6/(B24*(B10-B12))

PART 2 1-B23-B24-((B3^B23)*(B4^B24)/(B6 (̂B23+B24)))*((-B23*(B10-B11)/(B24*(B10-B12))) -̂B23)

PART 3 -B3/(B10-B11)+B4/(B10-B12)+B5

  

SOLVER SET B21=0,CHANGING B23:B25.
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The case of one stochastic factor, conveniently supposed to be P in this 

comparison, is calculated by solving equations (11.26) and (11.27) in Figure 11.3.  

Ignoring the cost drift of 4% used in the two factor and deterministic models, P 

would have to fall to below 52 before a renewal is justified.  For comparison, 

setting C=C=0 in the stochastic two factor model and CI=20 replicates the one 

factor model results. 

    Figure 11.3 

 

 

It is optimal to renew assets whenever the prevailing sales and operating 

cost values are in the renewal region, and to continue with the incumbent if 

otherwise. The renewal boundary shown in Figure 11.4 has a positive but changing 

slope and therefore the relationship between P̂  and Ĉ  is not exactly proportionate.
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21
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24

25

26

27

A B C D E F

 Renewal Template
INPUT Stochastic P Stochastic P & C

PI 80.00   80.00

CI 20.00  20.00

K 100.00  100.00

C* 20.00  20.00

P 0.30  0.30

C 0.00  0.00

 0.00  0.00

r 0.07  0.07

P -0.02  -0.02

C 0.00  0.00

OUTPUT    

Q,0 0.0000 Q, 0.0000

SP 0.0000  SP 0.0000

SUM 0.0000 H, 0.0000

  SUM 0.0000

1 -0.7190  -0.7190

P* 51.589  P* 51.589

 0.0000  0.3584

P*-C* 31.589 P*-C* 31.589

Stochastic P

Q,0 (0.5-B11/(B7^2))-SQRT((0.5-B11/(B7^2))^2+2*B10/(B7^2))-B19 EQ 27

SP (B20/(B19*(B10-B11)))*(B19-1+((B3/B20)^B19))-B3/(B10-B11)+B5 EQ 26

 

SOLVER SET B17=0, CHANGING B19:B20.
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   Figure 11.4 

 

The relationship implies that a positive trade-off exists between the two 

factors, and that an operating cost increase can be compensated by a relatively 

smaller sales increase before triggering a renewal event. A decrease in prevailing 

 

American Multi-factor Perpetual Renewal Option 
INPUT Stochastic P & C   
P I 80.00 80.00 80.00 80.00 80.00 80.00 

C I 20.00 20.00 20.00 20.00 20.00 20.00 

K 100.00 100.00 100.00 100.00 100.00 100.00 
C* 20.00 30.00 40.00 50.00 60.00 70.00 

 P 0.30 0.30 0.30 0.30 0.30 0.30 
 C 0.30 0.30 0.30 0.30 0.30 0.30 
 0.00 0.00 0.00 0.00 0.00 0.00 
r 0.07 0.07 0.07 0.07 0.07 0.07 

 p -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 
 c 0.04 0.04 0.04 0.04 0.04 0.04 

OUTPUT           
Q , 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 4 
SP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 11 
H , 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 13 
SUM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 -0.5805 -0.5075 -0.4456 -0.3988 -0.3640 -0.3377 
 0.6745 0.8092 0.9020 0.9631 1.0044 1.0338 
P* 51.644 56.447 59.282 62.114 65.228 68.594 
P*-C* 31.644 26.447 19.282 12.114 5.228 -1.406 
F* 895.6 863.0 803.6 754.1 715.9 686.0   

Q , 0.5*(B7^2)*B23*(B23-1)+0.5*(B8^2)*B24*(B24-1)+B9*B7*B8*B23*B24+B11*B23+B12*B24-B10   
SP B25/(-B23*(B10-B11))-B6/(B24*(B10-B12)) 
H , B18*B19+B20 
PART 1 B6/(B24*(B10-B12)) 
PART 2 1-B23-B24-((B3^B23)*(B4^B24)/(B6^(B23+B24)))*((-B23*(B10-B11)/(B24*(B10-B12)))^-B23)   
PART 3 -B3/(B10-B11)+B4/(B10-B12)+B5 
F* (B23+B24-1)*B25/(B23*(B10-B11)) 
SOLVER SET I11=0,CHANGING B23:H25. 

  
P*=a+bC*   56.285 59.309 62.333 65.357 68.381 
a 47.2121 
b 0.3024 
RSQ 0.9985 
Error Linear Regression 0.162 -0.027 -0.219 -0.129 0.213 
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sales of a specific amount is more likely to trigger renewal than an equal operating 

cost increase.  

Figure 11.4 indicates guidelines that management can use for deciding 

whether the asset should be renewed or not. A reasonable assumption may be to 

accept that a part of the discriminatory boundary is almost linear. If the 

discriminatory boundary in Figure 11.4 is sufficiently linear for C 30 , then the 

boundary could be represented by its least squares line and a simpler renewal 

decision rule would result. For these parameter values, an OLS regression P̂ =a + b

Ĉ  provides an approximate guideline.    

Figure 11.5 
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F= ROV + NPV

P 55.00 60.00 65.00 70.00 75.00 80.00

C 29.95 29.95 29.95 29.95 29.95 29.95

P-C 25.05 30.05 35.05 40.05 45.05 50.05

F 877.554 878.760 885.831 898.230 915.050 935.585 EQ 7

ROV 1265.533 1210.530 1162.045 1118.889 1080.153 1045.132

NPV -387.325 -331.770 -276.214 -220.659 -165.103 -109.548

F* 877.554 877.554 877.554 877.554 877.554 877.554 EQ 10

A4 636.751 636.751 636.751 636.751 636.751 636.751 EQ 9

        

F IF(B36<B25,B42,B40+B41)

ROV B43*(B36^B23)*(B37^B24)

NPV B36/(B10-B11)-B37/(B10-B12)

F* (B25/(B23*(B10-B11)))*(B23+B24-1)

A4 (-B25/(B23*(B10-B11)))*(1/((B25^B23)*(B6^B24)))
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Figure 11.5 (which is an extension of Figure 11.2) shows F (EQS 11.7 and 

11.9), the value of an on-going asset with an embedded renewal option (assuming 

the current parameter values), as a function of different values of current P.  ROV 

is the “pure renewal option value” and NPV is the on-going value of F without a 

renewal option.  In a world where the model assumptions are valid, F would be an 

appropriate substitute for the depreciated historical accounting figure for capital 

equipment, in real option balance sheets.   

 

Figure 11.6 shows the triggers for a single remaining renewal opportunity 

across a range of C.  In each case, the P trigger is much lower than for multiple 

renewals shown in Figure 11.4, so the issue of multiple versus single (or limited 

number of) possible renewals is a critical consideration in renewal decisions.  

    

Figure 11.6 
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American Multi-factor Single Renewal Option
INPUT Stochastic P & C  

PI 80.00 80.00 80.00 80.00 80.00 80.00

CI 20.00 20.00 20.00 20.00 20.00 20.00

K 100.00 100.00 100.00 100.00 100.00 100.00

C* 20.00 30.00 40.00 50.00 60.00 70.00

P 0.30 0.30 0.30 0.30 0.30 0.30

C 0.30 0.30 0.30 0.30 0.30 0.30

 0.00 0.00 0.00 0.00 0.00 0.00

r 0.07 0.07 0.07 0.07 0.07 0.07

P -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

C 0.04 0.04 0.04 0.04 0.04 0.04

OUTPUT      

Q, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 4

SP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 20

VM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 21

SUM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

        

1 -0.2861 -0.2539 -0.2367 -0.2261 -0.2188 -0.2135  

1 1.0868 1.1173 1.1329 1.1423 1.1486 1.1531  

P* 15.7941 20.4522 25.0760 29.6854 34.2872 38.8847  

        

11 0.801 0.863 0.896 0.916 0.930 0.940

Q, 0.5*(B7^2)*B20*(B20-1)+0.5*(B8^2)*B21*(B21-1)+B9*B7*B8*B20*B21+B11*B20+B12*B21-B10

SP: B22/(-B20*(B10-B11))-B6/(B21*(B10-B12))

VM (B6/(B21*(B10-B12)))*(1-B20-B21)-(B3/(B10-B11))+(B4/(B10-B12))+B5

SOLVER SET H18=0,CHANGING B20:G22.
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Figure 11.7 shows the abandonment trigger across a range of C.  Note that 

P* is an exact linear (.4586) function of Ĉ . In each case, the P trigger is less than 

for the single renewal opportunity.   So the abandonment option is unlikely to be 

exercised even if reversionary C approaches 80, unless P has fallen to way below 

the current reversionary operating cost.  

 

Figure 11.7 

 

  

11.4  WHAT INPUTS MATTER? 

 

We now investigate the parametric effects on the optimal renewal 

boundary using the base case data in Figure 11.4. 
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American Multi-factor Abandon Option
INPUT Stochastic P & C  

PI 80.00 80.00 80.00 80.00 80.00 80.00  

CI 20.00 20.00 20.00 20.00 20.00 20.00

K 100.00 100.00 100.00 100.00 100.00 100.00

C* 20.00 30.00 40.00 50.00 60.00 70.00

P 0.30 0.30 0.30 0.30 0.30 0.30

C 0.30 0.30 0.30 0.30 0.30 0.30

 0.00 0.00 0.00 0.00 0.00 0.00

r 0.07 0.07 0.07 0.07 0.07 0.07

P -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

C 0.04 0.04 0.04 0.04 0.04 0.04

OUTPUT      

Q, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 4

SP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 17

001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 16

SUM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

a 0.4586  

0 -0.1805 -0.1805 -0.1805 -0.1805 -0.1805 -0.1805

0 1.1805 1.1805 1.1805 1.1805 1.1805 1.1805

P* 9.1724 13.7586 18.3447 22.9309 27.5171 32.1033

P*=aC* 9.1724 13.7586 18.3447 22.9309 27.5171 32.1033  

       

Q, 0.5*(B7^2)*B20*(B20-1)+0.5*(B8^2)*B21*(B21-1)+B9*B7*B8*B20*B21+B11*B20+B12*B21-B10

SP B22/(-B20*(B10-B11))-B6/(B21*(B10-B12))

a (-B20/B21)*(B10-B11)/(B10-B12)

P*=aC* $B$19*B6

SOLVER SET H18=0,CHANGING B20:G22.
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    Figure 11.8 

 

Figure 11.8 shows the effects of sales volatility P  on the sales threshold 

P̂ .  It is apparent (assuming correlation equals 0) that increases in expected P 

volatility significantly reduce P̂ .  The P zero volatility case (where, however, the 

cost is still considered stochastic) shows that for high Ĉ , the P̂  is always higher 

than for the two factor stochastic case. Another interpretation is that the expected 

subsequently repeated spread between expected pairs of P̂  and Ĉ  that justifies 

C*

20.00 30.00 40.00 50.00 60.00

P

0.00 56.51 64.84 71.01 76.52 81.88

0.10 55.46 63.31 69.02 74.16 79.20

0.20 53.47 59.98 64.44 68.59 72.80

0.30 51.64 56.44 59.28 62.11 65.23

0.40 50.22 53.34 54.49 55.96 57.96

0.50 49.15 50.79 50.36 50.54 51.51

SPREAD P*-C*

P

0.00 36.51 34.84 31.01 26.52 21.88

0.10 35.46 33.31 29.02 24.16 19.20

0.20 33.47 29.98 24.44 18.59 12.80

0.30 31.64 26.44 19.28 12.11 5.23

0.40 30.22 23.34 14.49 5.96 -2.04

0.50 29.15 20.79 10.36 0.54 -8.49
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immediate renewal declines with increases in P volatility, and also with increases 

in Ĉ .  A similar pattern of effects is obtained for the operating cost volatility 
C .  

   

   Figure 11.9 

 

The effects of various correlation coefficient values on the renewal boundary are 

illustrated in Figure 11.9. The boundaries for 1 1     are not exactly linear and 

have varying positive slopes.  The boundary slope attains its greatest value for 

perfect positive correlation but is nearly zero for 1   . Prevailing operating costs 

hardly affect the renewal decision for 1   . This is explained by the nature of 

C*

20.00 30.00 40.00 50.00 60.00



-1.00 50.61 53.63 54.10 54.57 55.49

-0.50 51.05 54.81 56.27 57.73 59.56

0.00 51.64 56.44 59.28 62.11 65.23

0.50 52.56 59.02 64.05 69.09 74.31

1.00 54.43 64.89 75.61 86.72 97.89

SPREAD P*-C*



-1.00 30.61 23.63 14.10 4.57 -4.51

-0.50 31.05 24.81 16.27 7.73 -0.44

0.00 31.64 26.44 19.28 12.11 5.23

0.50 32.56 29.02 24.05 19.09 14.31

1.00 34.43 34.89 35.61 36.72 37.89
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the threshold levels, which collectively represent the positive trade-off between the 

two variables along the renewal boundary. If the prevailing sales and operating  

cost fall on the boundary, the outcome of a sales increase (decrease) accompanied 

simultaneously with an operating cost increase (decrease) can belong to either the 

continuance or renewal region. In contrast, when a sales increase (decrease) 

accompanies an operating cost decrease (increase), the outcome always belongs to 

the continuance (renewal) region. When this occurs, the decision to continue or 

renew depends on only the prevailing sales level. If the correlation is perfectly 

negative and the variances are equal, a random shock will increase (decrease) sales 

and decrease (increase) operating costs by an identical amount. It follows that the 

renewal decision is governed by only the sales level. In contrast, the renewal 

boundary has a significantly positive slope for 0   and the prevailing values of 

both variables are relevant. In summary, sales and operating costs cannot be 

legitimately assimilated into a single variable for the normal case of zero or 

positive correlation. For the rare case where the two variables are perfectly 

negatively correlated, the renewal decision can be approximately decided by the 

prevailing sales level. 

Another interpretation is that the subsequently repeated spread between 

expected pairs of P̂  and Ĉ  that justifies immediate renewal increases with 

increases in correlation, and declines with increases in Ĉ .   

 

All of these five models assume that the reversionary P and C levels are 

constant, that is there is no technological progress, and also stochastic 

reinvestment costs, salvage value and tax implications are ignored.   Some of these 

restrictions are relaxed in Adkins and Paxson articles published in 2013.   

 

A&P (EFM) consider either unexpected, or anticipated, or uncertain 

(volatile) technological progress.  If progress is anticipated or highly uncertain, 

alert financial managers should wait longer before replacing equipment.  Uncertain 

technological progress increases the real option value of waiting.  In that case the 

best approach for equipment suppliers is to reduce the expected revenue and/or 



    21 

cost volatility, and/or reduce the expected uncertainty of technological 

innovations, since then an incentive exists for the early replacement of old 

equipment when a technologically advanced version is launched.   

 

A&P (OMEGA) examine the possibilities of premature and postponed 

replacement in a deterministic infinite horizon model when there is technological 

progress. A step change improvement characterizing technological progress in the 

initial operating cost level for the successor occurring during the economic lifetime 

of the incumbent justifies premature replacement, compared to the traditional 

present value approach. This finding can be extended to step change improvements 

in the initial revenue level for the successor and for the re-investment cost. In 

contrast, if the technological progress can be characterized by a constant declining 

rate for the initial operating cost level for the successor, then the replacement is 

postponed for certain parameter values. This finding can be extended to different 

assumed improvement rates in the initial revenue level for the successor and for 

the re-investment cost. 

 

A&P (EJOR) show the optimal replacement policy for an asset subject to 

stochastic deteriorating operating cost for three different tax depreciation 

schedules and a known re-investment cost.  Tax depreciation exerts a critical 

influence over the replacement policy by lowering the operating cost thresholds.  

Although typically a decline in the corporate tax rate, increase in any initial capital 

allowance, or decrease in the depreciation lifetime (increase in depreciation rate) 

results in a lower operating cost threshold which justifies replacing older 

equipment, these results are not universal, and indeed for younger age assets the 

result may be the opposite. An accelerating depreciation schedule may incentivize 

early replacement in a deterministic context, but not necessarily for an 

environment of uncertainty.   

 

In the future expect improvements in  renewal models by several authors. 
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SUMMARY 

Multiple asset renewals are appropriate for entities that have a plausible 

continual existence forever (except in cases of extreme fashion or product 

downgrading creating a single renewal possibility, or low reversionary P and high C 

justifying abandonment), and yet equipment quality and effectiveness (P) and 

efficiency (C) deteriorate with time and/or usage.   

There are five basic models in this chapter: multiple two factor renewals, 

deterministic and one-factor renewals, and two factor single renewals and 

abandonments.  The deterministic equations are (11.23), (11.24) and (11.25).  The 

one-factor equations are (11.26) and (11.27), where the sales trigger is of interest 

(assuming cost is constant).  The multiple two-factor equations are (11.4), (11.11) 

and (11.13).  All of these equations are solved simultaneously, assuming an 

identified cost trigger level.  Using the same parameter values, the deterministic 

model shows where Ĉ =29.9 the optimal deterministic P̂  =65.4, the one-factor P̂  

=51.60, the two-factor P̂  =57.08.  If the current P=60, renewal is justified using the 

deterministic model but a long wait is indicated using the one-factor model (which 

ignores the 4% annual increase in cost of the other models).  There are some 

simplifications possible even for the multiple stochastic P and C model as shown in 

Figure 11.4, which are, however, parameter specific.  For instance, for Ĉ >30, P̂

=47+.3 Ĉ  is a reasonable approximation.  For the deterministic case, a year by year 

comparison of sales and costs deterioration is easy to construct.   

Certain parameters are important drivers of justifiable multiple renewals, P 

volatility as shown in Figure 11.8 and correlation as shown in Figure 11.9.  

Practical implications for CFOs and equipment managers are that if expected sales 

volatility is high, don’t worry about cost levels, but defer renewals until current 

sales are low.  In order to encourage sales, equipment saleswomen should 

emphasize low future sales volatility.  Similarly if sales and cost correlation is 

negative, cost levels don’t matter; saleswomen should search for possible high 

correlation of sales and costs, and above all high sales produced by new equipment 

if there is technological progress.    
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Focused managers will discover the critical drivers of their particular asset 

renewal case, and some may want to explore more renewal models which concern 

fashion and technical innovation jumps, salvage or second hand values, 

competition and taxation. 
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EXERCISES 

 

EXERCISE 11.1 

Bobby Riskins thought he needed a new car, since his nine year old Buick had  

maintenance costs increasing by 3% per annum from the initial $$20; he could not 

stand costs over $$26.3=C*. He didn’t think much of the old Buick style, equal to a 

car enjoyment deterioration rate of 10% per annum.  A new car costs $$150 and 

would bring his enjoyment level up to the original $$80.  You are a car salesman, 

and almost honest, so advise Bobby using generally accepted NPV methods with 

r=14%.  HINT: Figure TC* using EQ 11.23. For P* try EXP(ln(PI)+ TC*P) as an 

approximation.  What is P0*EXP (P *9)?   

 

EXERCISE 11.2    

Tour de France dreamer, Lens Footstrong, believes he could go faster on a new 

cycle, since race times have been shown to be faster for new cycles.  New cycles 

cost a fortune, 100, and Lens is not convinced that he wants to pay that much to go 

faster.  100% speed is worth 80, constant exercise to obtain this level is 30. Using 

his current cycle, he is now at half speed and losing in races.  He knows that =-1, 

due to the current interest rates (14%), speed volatility (30%) and his belief that a 

new cycle speed rate would deteriorate at a rate of 5% per annum.  Advise him.  

HINT: P* is the solution to a quadratic equation, where a=(1/(-(r-)PI), b=(-1)/-(r-

), c=-((PI/(r-))-K), see Chapter 4, Appendix. 

 

EXERCISE 11.3   

Michael Funagan, owning Funair initially operating out of Tullamore, was thinking 

of replacing his old airplane.  He knew that with a new plane P=$80, K=$100, 

interest rates are 8%, sales have a 20% volatility and decline by 4% per annum.  His 

costs are constant (contracted out at $1).  Now sales are around $50.  Should he wait 

or renew?  HINT: both  and P* are solutions to quadratic equations, where for P*,   

a=(1/(-(r-)PI), b=(-1)/-(r-), c=-((PI/(r-))-K). 
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PROBLEMS 

 

PROBLEM 11.4      

Bobby’s mom was the star of her real options class, and knew that his pleasure and 

car costs were highly volatile (40%) and completely negatively correlated.  “Wait, 

my boy!”  Is she right?  How much longer must Bobby endure his mom’s 

cleverness, before getting a shiny new red car to impress the girls? 

 

PROBLEM 11.5       

Another Tour de France dreamer, Daniel Darcy, believes he could go faster on a 

new cycle, since race times have been shown to be faster for new cycles.  New 

cycles cost a fortune, 100, and Daniel is not convinced that he wants to pay that 

much to go faster.  100% speed is worth 80, constant exercise to obtain this level is 

30. Using his current cycle, he is now at half speed, and will hardly qualify for the 

Tour. Current interest rates are 14%, speed volatility 11.55% and he believes that a 

new cycle speed rate would deteriorate at a rate of 5% per annum.  Advise him. 

 

PROBLEM 11.6  

Michael Funagan, owner of Funair now operating out of Dublin and Manchester, 

was thinking of replacing his fleet of old airplanes.  He knew that with a new plane 

P=$80, compared to current sales of $60, K=$100, interest rates are 7%, net revenue 

has a 30% volatility and declines by 4% per annum.  His low costs are constant at 

$20.  A new MBS graduate employee understood Excel, so approximations were not 

required.  Should Michael wait or renew? 


